Промежуточные скрепления осуществляют связь между рельсами и подрельсовыми основаниями. Они должны обеспечивать: стабильность ширины колеи; прижатие рельсов к основанию, исключающее отрыв и угон рельсов; наилучшие условия температурной работы рельсов; проведение регулировки положения рельсов по высоте и ширине колеи; замену скреплений без перерывов в движении поездов; механизированную сборку и содержание узлов скреплений; рациональную пространственную упругость и вибростойкость узлов скреплений; электроизоляцию рельсов от основания; экономическую эффективность конструкции верхнего строения пути. В зависимости от конструкции скрепления делятся на подкладочные и бесподкладочные (без металлических подкладок под рельсами). Подкладки обеспечивают большую площадь передачи давления от рельса на опору, подуклонку рельсов без затески деревянных шпал, объединяют все элементы крепления при работе на сдвиг. Подкладочные скрепления в свою очередь могут быть раздельными, в которых рельс с подкладкой и подкладка с опорой соединяются разными элементами, т. н. прикрепителями; нераздельными — для этих соединений используются одни и те же прикрепители; смешанными — рельс через подкладку соединяется с опорой, а подкладка, кроме того, самостоятельно прикрепляется к опоре.
Скрепления для деревянных шпал. Одной из самых распространенных конструкций промежуточных скреплений для деревянных шпал на отечественных ж. д. является подкладочное костыльное скрепление смешанного типа ДО (рис. 3.43). К достоинствам этого скрепления относятся малодетальность, сравнительно небольшой расход металла, простота в изготовлении и эксплуатации. Однако такая конструкция не обеспечивает упругой связи рельса со шпалой и плохо сопротивляется угону пути. Основными элементами скрепления ДО являются клинчатая ребордчатая подкладка и костыли, которые подразделяются на основные и обшивочные. Основные костыли прижимают подошву рельса к подкладке и шпале, удерживают рельс от бокового сдвига и опрокидывания, а обшивочные — прижимают подкладку к шпале, уменьшая ее вибрацию, и воспринимают сдвигающие усилия. При установке скреплений на прямых участках и в кривых радиусом более 1200 м рельсы пришивают на каждом конце промежуточной шпалы четырьмя костылями, а на стыковой шпале — пятью. В кривых радиусом 1200 м и менее, а также на мостах, в тоннелях и на участках со скоростями движения св. 120 км/ч рельсы на всех шпалах пришивают пятью костылями. Для уменьшения интенсивности износа шпал между подкладкой и шпалой укладывают прокладки из резины, резинокорда, гомбелита (прессованные кордные нити, пропитанные смолой) толщиной от 6 до 10 мм. Нормальные (обычные) костыли имеют овальную головку, а удлиненные (пучинные) — призматическую. Длина нормальных костылей 165 мм, масса 0,378 кг; длина пучинных — 205, 240 и 280 мм. Сопротивление выдергиванию нормального костыля из новой сосновой шпалы составляет ок. 20 кН. Костыль, забиваемый в шпалу без предварительного просверливания отверстия, перерубает волокна и, погружаясь в шпалу, надламывает их, вследствие чего его сопротивление выдергиванию уменьшается примерно на 30 %, а сопротивление отжатию — на 16 % по сравнению с сопротивлением при забивке в предварительно просверленные отверстия. Чтобы уменьшить разрушающее действие костылей, в шпалах предварительно сверлят и антисептируют отверстия глубиной 130 мм и диаметром 12,7 мм.
Вторым по применяемости на отечественных дорогах является раздельное скрепление КД (рис. 3.44), в котором рельс прижат к подкладке двумя клеммами. Клеммы прижимаются натяжением болтов, устанавливаемых сбоку в вырезы подкладок. Между гайкой болта и клеммой ставят двухвитковую шайбу. Подкладка к шпале крепится четырьмя шурупами, под головку которых также устанавливаются двухвитковые шайбы. Под подошву рельса укладывают упругую прокладку. Это скрепление (в отличие от ДО) обеспечивает постоянное прижатие рельса к подкладке и не требует установки противоугонов. Кроме того, скрепление КД позволяет осуществлять регулировку положения рельсов по высоте до 10-14 мм за счет применения прокладок различной толщины. Достоинствами раздельных скреплений являются: сведение к минимуму вибраций подкладок; возможность регулировки положения рельсов по высоте; смена рельсов без вывинчивания шурупов; сильное прижатие рельсов к подкладкам, что обеспечивает достаточное сопротивление угону и температурным деформациям рельсов. Недостатки — многодетальность, создающая сложности при комплектовании узлов скреплений, и быстрое ослабление натяжения клеммных болтов, что обусловливает необходимость их постоянного подтягивания для предотвращения угона пути. Сопротивление выдергиванию шурупов, применяемых в качестве прикрепителей, благодаря винтовой нарезке в 1,5-2 раза выше, чем костылей, однако их сопротивление отжатию меньше и составляет 50-60 % от сопротивления костылей. Значительно рациональнее использовать раздельные скрепления не с жесткими, а с упругими клеммами, примером которых является скрепление Д4. В этом скреплении клеммный болт заводится в фигурный вырез в подкладке (рис. 3.44,6). Для фиксирования положения клемм в высоких ребордах подкладки предусмотрены вырезы. Скрепление Д4 позволяет производить регулировку положения рельсов по высоте до 14 мм за счет изменения толщины подрельсовых прокладок. Во избежание смятия древесины шпал под подкладки укладывают резиновые или резинокордовые прокладки.
Скрепления для железобетонных шпал. В отличие от дерева железобетон обладает повышенной прочностью на сжатие, что позволяет широко применять бесподкладочные промежуточные скрепления, осуществлять подуклонку рельса за счет наклона подрельсовой площадки, передавать на бетон значительные боковые усилия. В то же время высокая жесткость и электропроводность железобетона вызывают необходимость применения в узлах скрепления электро и виброизолирующих деталей. Типовым промежуточным скреплением для железобетонных шпал является раздельное клеммно-болтовое скрепление КБ (рис. 3.45), в котором рельс к подкладке прижимается жесткими клеммами, надеваемыми на клеммные болты; фигурные головки болтов заводятся в пазы подкладочных реборд. Под гайки клеммных болтов ставятся упругие шайбы. Металлические подкладки укладывают на наклонную (для обеспечения подуклонки рельсов) подрельсовую площадку, заглубленную в тело шпалы на 15-25 мм. Для электро и виброизоляции на бетон под подкладку кладут резиновую прокладку толщиной 6-8 мм. Подкладка крепится к шпале закладными болтами; при этом головки болтов опираются на замоноличенную в бетон металлическую шайбу, которая при затяжке монтажных гаек равномерно распределяет нагрузку на бетон. Электроизоляция подкладок от шпал осуществляется нашпаль-ной прокладкой и втулкой из текстолита, надеваемой на стержень закладного болта. Недостатками конструкции типа КБ являются многодетальность (21 деталь в каждом узле скреплений), материалоемкость (общая масса металлических и полимерных деталей на 1 км пути составляет соответственно 41,6 и 2,1 т) и наличие ок. 16 тыс. болтов на 1 км пути, содержание которых (очистка от грязи, смазка, подтягивание гаек) требует больших затрат.
Одной из основных тенденций в совершенствовании скреплений для железобетонных шпал является создание безболтовых анкерных конструкций с упругими клеммами. Для российских ж. д. разработано (МИИТ, Л. П. Алексеева) анкерное рельсовое скрепление (АРС), предназначенное для магистральных линий без ограничений по грузонапряженности и скоростям движения поездов. АРС характеризуется высокой надежностью и стабильностью рельсовой колеи, малодетальностью (отсутствием резьбовых соединений), простотой сборки и эксплуатации и, как следствие, высокой экономической эффективностью. Предназначенный к серийному сравнению с КБ-65 на 30 %, что позволяет сэкономить на каждом километре пути не менее 15 Т металла.