Материал из ЖД cправочник
Перейти к: навигация, поиск

Стыковые скрепления выполняются в виде специальных накладок, соединяющих рельсы при помощи болтов. Места соединения рельсов между собой называют стыками. Известны различные способы обработки торцов рельсов для соединения их в стыках: косой резкой (в плане), внахлестку, продольной срезкой части головки и др. Однако такие стыки при проверке их в эксплуатации оказались малоудовлетворительными (из-за выкрашивания металла в ослабленной головке рельса, выпучивания шейки и т. п.) На ж.д. во всем мире приняты наиболее надежные стыки с торцами рельсов, перпендикулярно срезанными относительно продольной оси рельса.
В зависимости от конструкции стыки бывают болтовые, клееболтовые и сварные. В болтовых стыках (наиболее распространены) между концами рельсов, перекрытых накладками, оставляют зазоры для возможности изменения длины рельсов при изменении температуры. Вследствие разрыва сплошности и изменения изгибной жесткости рельсовых нитей в болтовых стыках при проходе по ним колес подвижного состава возникают излом упругой линии рельсов и дополнительные ударно-динамические воздействия на путь, поэтому стык является самым напряженным местом ж.-д. пути. Ок. 35-50 % затрат труда по выправке пути связано с наличием стыков. Рельсовые стыки создают и значительное сопротивление движению поездов (ок. 5-7 % основного сопротивления). В клееболтовых стыках накладки приклеиваются к рельсам и стягиваются болтами. В сварных стыках обеспечена непрерывность рельсовых нитей. Однако, если в сварном стыке рельсы примыкают друг к другу под углом или ступенькой в плане и профиле, то ударно-динамические воздействия колес на путь в таком стыке могут быть весьма значительными.
По отношению к опорам различают стыки, расположенные на шпале, на весу и на сдвоенных шпалах (рис. 3.38). Стык на шпале получается жестким, поэтому быстро расстраивается. Стык на весу обеспечивает большую упругость пути, однако в его накладках реализуются более высокие напряжения. Основными недостатками стыка на сдвоенных шпалах являются жесткость, трудность подбивки балласта под шпалы, дополнительный расход металла на стяжные болты.


Zp 3 38.jpg

Всеобщее распространение получили стыки на весу. Изгиб рельсовых концов и накладок от колесной нагрузки при таком стыке больше, чем при стыках на опоре. Для снижения изгибающего момента расстояния между осями стыковых шпал устраивают меньшими, чем между осями промежуточных шпал. На пути с рельсами Р50 стыковой пролет принят равным 440 мм, а при рельсах Р65 и Р75 — 420 мм, в то время как промежуточные пролеты (расстояния между осями промежуточных шпал) приняты равными 550 мм при 1840 шпалах на 1 км и 500 мм при 2000 шпалах на 1 км.
По взаимному расположению стыков на обеих рельсовых нитях различают стыки по наугольнику, вразбежку и расположенные бессистемно. Лучшими показателями обладают стыки по наугольнику, которые на обеих рельсовых нитях находятся на одной нормали к продольной оси колеи. Правильность положения таких стыков проверяется шаблоном-наугольником (отсюда название). Основные преимущества стыков по наугольнику по сравнению со стыками вразбежку: одновременность ударных воздействий колес при проходе стыков, в связи с чем количество ударов на рельс в два раза меньше, чем при стыках вразбежку; центральность ударов, что снижает раскачивание подвижного состава; возможность применения звеньевых путекладочных кранов при смене рельсов со шпалами; возможность усиления стыков сближением стыковых шпал вплоть до их сдваивания.
На ж. д. России для рельсов современных типов применяются простые по форме двухголовые накладки (рис. 3.39). Нормальная работа стыкового скрепления обеспечивается прочностью накладок, плотным прилеганием
и достаточным прижатием их рабочих граней к рельсу. Двухголовые накладки изготовляются распирающими, то есть они входят как клин между наклонными плоскостями головки и подошвы рельса, образуя пазухи. Это позволяет подтягиванием стыковых болтов выбирать зазоры между накладками и рельсами, обеспечивая необходимую плотность, заклинивая накладки в пазухе рельсов. Стыковые накладки должны иметь при этом достаточную длину. При проходе колеса через стык силы, направленные на отрыв головки от шейки рельса, больше при короткой накладке, чем при длинной. Кроме того, при длинных накладках на криволинейных участках легче обеспечить плавность изгиба рельсовых нитей без образования резких углов в стыках. Для рельсов Р75 и Р65 накладки выполняют взаимозаменяемыми длиной 800—1000 мм соответственно с четырьмя и шестью болтовыми отверстиями (четырех- и шестидырные), а к рельсам Р50 — длиной 820 мм (только шестидырные). В накладке чередуются круглые и овальные отверстия. В овальные отверстия стыковые болты входят своими овальными подголовниками, мешающими болтам проворачиваться при завинчивании гаек. Чередование круглых и овальных отверстий предопределяет поочередную постановку болтов гайками — то наружу колеи, то внутрь.

Zp 3 39.jpg

Накладки изготовляют из полностью раскисленной спокойной мартеновской стали с содержанием углерода 0,45-0,62 %, временным сопротивлением на разрыв не менее 860 МПа, пределом текучести не менее 540 МПа, твердостью по Бринеллю в пределах 235—388 НВ. Стыковые болты выпускаются нормальной или повышенной прочности (с временным сопротивлением на разрыв соответственно 735 и 833 МПа). Применение болтов повышенной прочности наиболее целесообразно для увеличения стыковых сопротивлений, уменьшающих длину подвижных участков сварных рельсовых плетей и обеспечивающих необходимый зазор в стыках. Болты нормальной прочности изготовляют из стали марки 35, а повышенной прочности — из легированной стали марки 40Х. Болты подвергаются термической обработке.
На участках пути, где стыкуются разнотипные рельсы, а также однотипные рельсы, имеющие различный вертикальный износ, устраивают переходные стыки (рис. 3.40), использующие переходные накладки, форма и размеры которых обеспечивают совпадение торцов рельсов по поверхности катания и боковым рабочим граням.

Zp 3 40.jpg

На участках, оборудованных электрической сигнализацией, а также на электрифицированных участках рельсовые нити должны быть токопроводящими. Поэтому для уменьшения сопротивления прохождению сигнального тока через стык ставят рельсовые соединители. Они состоят из двух оцинкованных проволок (рис. 3.41 ,а) диаметром 5 мм, концы которых входят в конические
луженые штепсели, забиваемые в высверленные в шейках рельсов отверстия диаметром 10,4 мм (по одному с обоих концов накладки). Эти соединители помещают в пазуху стыковой накладки. Часто вместо штепсельных соединителей применяют также короткие соединители в виде стального троса, привариваемого к головке рельса. На электрифицированных линиях для пропуска по рельсам обратного тягового тока с минимальным сопротивлением в стыках ставят приварные соединители из медного троса общим сечением 70 мм2 при постоянном и 50 мм2 при переменном токе (рис. 3.41,6). Концы медного троса находятся в стальных наконечниках или манжетах, привариваемых к рельсу электродуговым или термитным способом. Изолирующий стык устраивают таким образом, чтобы электрический ток не мог пройти от одного из соединяемых рельсов к другому. Такие стыки устанавливают в створе с входными, выходными, проходными, маневровыми светофорами и на стрелочных переводах. В уравнительных пролетах бесстыкового пути широко применяются клееболтовые изолирующие стыки с двухголовыми накладками (рис. 3.42). В таких стыках используются типовые двухголовые шестидырные накладки, простроганные по верхней и нижней граням, и специальные (полнопрофильные) накладки, облегающие пазухи рельсов. Изоляция обеспечивается стеклотканью, пропитанной эпоксидным клеем. С 1999 г. на ряде направлений ж. д. России начато широкое применение высокопрочных изолирующих стыков с металлокомпозитными накладками.

Zp 3 41.jpg